metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Hydroxy-1-naphthyldiazenyl)pyridinium [1-(2-pyridyldiazenyl)-2naphtholato- $\kappa^3 N, N', O$]tris(thiocyanato- κN)chromium(III) methanol solvate

Tian-Fu Liu,^a* Hong-Yan Lv,^a Bang-Tun Zhao^b and Jian-Ge Wang^b

^aThe Institute of Chemical Physics, and Department of Chemistry, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and ^bDepartment of Chemistry, Luoyang Normal University, Luoyang 471022, People's Republic of China

Correspondence e-mail: liutf@bit.edu.cn

Received 9 June 2007; accepted 16 August 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.012 Å; R factor = 0.067; wR factor = 0.209; data-to-parameter ratio = 17.1.

In the title compound, $(C_{15}H_{12}N_3O)[Cr(C_{15}H_{10}N_3O)(NCS)_3]$ -CH₄O, the Cr^{III} atom is coordinated by two N atoms and one O atom from the tridentate 1-(2-pyridyldiazenyl)-2-naphtholate (PAN) ligand and three N atoms from thiocyanate ions in a distorted octahedral arrangement. Another uncoordinated and protonated PAN molecule and a methanol solvent molecule are present in the asymmetric unit. The crystal packing is stabilized by π - π interactions [centroid–centroid separation 3.594 (4) Å] and O–H···N and O–H···S hydrogen bonds.

Experimental

Crystal data

c = 12.5197 (12) Å
$\alpha = 95.568 \ (2)^{\circ}$
$\beta = 91.851 \ (2)^{\circ}$
$\gamma = 96.973 \ (2)^{\circ}$
V = 1751.1 (3) Å ³
Z = 2

Mo F	<i>α</i> radiation	
$\mu = 0$	0.56 mm^{-1}	

Data collection

Bruker SMART APEX II CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.874, T_{max} = 0.912

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ 454 parameters $wR(F^2) = 0.209$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 0.30 \text{ e Å}^{-3}$ 7770 reflections $\Delta \rho_{min} = -0.40 \text{ e Å}^{-3}$

T = 273 (2) K $0.25 \times 0.22 \times 0.17$ mm

 $R_{\rm int} = 0.039$

11793 measured reflections

7770 independent reflections

2997 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Cr1-O1	1.964 (3)	Cr1-N1	2.003 (4)
Cr1-N4	1.981 (5)	Cr1-N6	2.003 (5)
Cr1-N5	1.992 (4)	Cr1-N3	2.058 (4)
O1-Cr1-N4	92.38 (16)	N5-Cr1-N6	91.81 (17)
O1-Cr1-N5	100.34 (15)	N1-Cr1-N6	91.51 (16)
N4-Cr1-N5	89.61 (17)	O1-Cr1-N3	157.01 (15)
O1-Cr1-N1	80.57 (14)	N4-Cr1-N3	89.21 (17)
N4-Cr1-N1	87.03 (16)	N5-Cr1-N3	102.61 (16)
N5-Cr1-N1	176.56 (16)	N1-Cr1-N3	76.61 (15)
O1-Cr1-N6	89.83 (16)	N6-Cr1-N3	88.04 (17)
N4-Cr1-N6	177.12 (17)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3A···S3	0.82	2.45	3.234 (5)	161
$O2-H2 \cdot \cdot \cdot N7$	0.82	2.41	2.840 (9)	114
$O2-H2\cdots N8$	0.82	1.81	2.536 (8)	147

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge support from the Natural Science Foundation Council of China (NSFC) (grant No. 20401003) and the Excellent Young Scholars Research Fund of the Beijing Institute of Technology (grant No. 000Y07-26).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2044).

References

Bruker (2003). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, m2406 [doi:10.1107/S1600536807040688]

T.-F. Liu, H.-Y. Lv, B.-T. Zhao and J.-G. Wang

Comment

The color reactions of metal ions and PAN (1-(pyridin-2-yldiazenyl)naphthalen-2-ol) were a useful method in spectrophotometric determination. We report herein the crystal structure of a chromium(III) complex where the Cr^{III} ion is coordinated by a PAN⁻ and three thiocyanate ions.

The crystal structure of (I) consists of a $[Cr(PAN)(NCS)_3]^-$ anion, an uncoordinated protonated PAN cation and a methanol molecule (Fig. 1). The chromium ion has a slightly distorted octahedral coordination geometry, its symmetry being close to C_{2V}. The Cr—N_(PAN) bond distances are 2.006 (4) and 2.058 (5) Å, the Cr—O bond distance is 1.970 (4) Å. The ligand is planar, the dihedral angle between two aromatic rings is 6.5 (3)°. The Cr—N_(NCS) bond distances vary in the range 1.981 (6)–2.001 (6) Å, and the thiocyanate ligands are almost linear with N–C–S angles 178.6 (6)–179.4 (7)°.

The uncoordinated PAN is protonated at (N9), the dihedral angle between two aromatic rings is 15.4 (2)°. Related aromatic rings A and Bⁱ [ring A: C5, C6, C7, C8, C9 and C10; ring B: N9, C29, C30, C31, C32 and C33; symmetry code: (i) 1 -x, y, 1-z) show π - π stacking with a ring-ring separation of 3.594 (4) Å. A C—S…Cg (π -ring centre) interaction from the C17—S2 bond to ring R^{ii} [ring R: C19, C20, C21, C22, C23 and C28; symmetry code: (ii) -x, 1-y, 1-z) is also obsered [C17…Cg = 3.684 (7), S…Cg = 3.483 (5) Å and C17—S…Cg = 84.1 (2)°] (Fig. 2). The crystal packing is characterized by three conventional hydrogen bonds, c.f. Table (Spek, 2003).

Experimental

A methanol solution of PAN (0.3 mmol, 3 ml) was mixed with a methanol solution of chromium(III) nitrate (0.3 mmol, 3 ml). The resulting solution was kept under stirring for about 30 min, and then an aqueous solution of KSCN (0.6 mmol, 6 ml) was added to the mixture. Dark green single crystals were obtained after three weeks (yield 32%).

Refinement

The hydrogen atoms were assigned with isotropic displacement factors and included in the final refinement cycles by use of geometrical restraints (C_{ar} -H = 0.93 Å; C_{Me} -H = 0.96 Å; N-H = 0.86 Å; O-H = 0.82 Å).

Figures

Fig. 1. ORTEP plot of [Cr(C₁₀H₆NO₂)₂(NCS)(C₂H₆O)]; displacement ellipsoids are drawn at the 30% probability, and hydrogen atoms are shown as spheres of arbitrary radii.

Fig. 2. The π - π stacking interactions between PAN ligands and C—S ring contacts.

2-(2-Hydroxy-1-naphthyldiazenyl)pyridinium [1-(2-pyridyldiazenyl)-2-naphtholato-κ³N,N',O]tris(thiocyanatoκN)chromium(III) methanol solvate

Crystal data	
$(C_{15}H_{12}N_3O)[Cr(C_{15}H_{10}N_3O)(NCS)_3]\cdot CH_4O$	Z = 2
$M_r = 756.82$	$F_{000} = 778$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.435 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073 \text{ Å}$
a = 11.5045 (11) Å	Cell parameters from 943 reflections
b = 12.3189 (11) Å	$\theta = 2.4 - 18.5^{\circ}$
c = 12.5197 (12) Å	$\mu = 0.56 \text{ mm}^{-1}$
$\alpha = 95.568 \ (2)^{\circ}$	T = 273 (2) K
$\beta = 91.851 \ (2)^{\circ}$	Block, dark green
$\gamma = 96.973 \ (2)^{\circ}$	$0.25\times0.22\times0.17~mm$
V = 1751.1 (3) Å ³	

Data collection

Bruker SMART APEX II CCD diffractometer	7770 independent reflections
Radiation source: fine-focus sealed tube	2997 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.039$
T = 291(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 10$
$T_{\min} = 0.874, T_{\max} = 0.912$	$k = -16 \rightarrow 16$
11793 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained
$wR(F^2) = 0.209$	$w = 1/[\sigma^2(F_o^2) + (0.0826P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{max} < 0.001$
7770 reflections	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
454 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Cr10.67707 (7)0.78088 (6)0.54026 (6)0.02C10.4376 (4)0.7422 (4)0.4627 (4)0.02C20.4604 (4)0.6584 (4)0.5301 (4)0.02C30.3659 (5)0.5775 (4)0.5483 (4)0.02H30.37840.52220.59130.02	578 (3) 5548 (12) 559 (13) 677 (15) 81* 727 (16)
C10.4376 (4)0.7422 (4)0.4627 (4)0.02C20.4604 (4)0.6584 (4)0.5301 (4)0.02C30.3659 (5)0.5775 (4)0.5483 (4)0.02H30.37840.52220.59130.02	548 (12) 559 (13) 677 (15) 81* 727 (16)
C20.4604 (4)0.6584 (4)0.5301 (4)0.0C30.3659 (5)0.5775 (4)0.5483 (4)0.0H30.37840.52220.59130.0	559 (13) 677 (15) 81* 727 (16)
C30.3659 (5)0.5775 (4)0.5483 (4)0.00H30.37840.52220.59130.08	677 (15) 81* 727 (16)
H3 0.3784 0.5222 0.5913 0.08	81* 727 (16)
	727 (16)
C4 0.2590 (5) 0.5803 (4) 0.5038 (5) 0.0	07*
H4 0.1985 0.5276 0.5190 0.08	8/*
C5 0.2331 (4) 0.6610 (4) 0.4336 (5) 0.00	665 (15)
C6 0.1223 (5) 0.6589 (5) 0.3868 (6) 0.08	886 (19)
H6 0.0619 0.6078 0.4051 0.10	06*
C7 0.0996 (5) 0.7317 (5) 0.3128 (6) 0.10	02 (2)
H7 0.0250 0.7287 0.2807 0.12	22*
C8 0.1902 (5) 0.8092 (5) 0.2875 (6) 0.10	00 (2)
H8 0.1760 0.8576 0.2374 0.12	20*
C9 0.2999 (4) 0.8154 (4) 0.3350 (5) 0.02000	741 (16)
H9A 0.3587 0.8689 0.3180 0.09	89*
C10 0.3250 (4) 0.7413 (4) 0.4100 (4) 0.00	620 (14)
C11 0.6506 (4) 0.9631 (4) 0.4199 (4) 0.05	536 (12)
C12 0.6706 (5) 1.0577 (4) 0.3700 (4) 0.00	674 (15)
H12 0.6115 1.0803 0.3281 0.09	81*
C13 0.7799 (5) 1.1187 (4) 0.3829 (5) 0.0 ^o	785 (17)
H13 0.7958 1.1828 0.3495 0.09	94*
C14 0.8649 (5) 1.0833 (5) 0.4458 (5) 0.08	891 (19)
H14 0.9392 1.1229 0.4549 0.10	07*
C15 0.8397 (4) 0.9896 (5) 0.4951 (5) 0.0	799 (17)
H15 0.8968 0.9684 0.5402 0.09	96*
C16 0.7459 (4) 0.6619 (4) 0.3243 (5) 0.00	631 (14)
C17 0.8993 (4) 0.7003 (4) 0.6412 (4) 0.03	530 (12)
C18 0.6145 (4) 0.9187 (5) 0.7523 (5) 0.00	639 (14)
C19 0.9169 (7) 0.2356 (8) 1.0362 (5) 0.10	06 (3)
C20 1.0369 (13) 0.2950 (12) 1.0400 (8) 0.15	56 (6)
C21 1.1309 (12) 0.2374 (15) 1.0798 (11) 0.22	21 (10)
H21 1.2080 0.2703 1.0786 0.20	65*
C22 1.1116 (19) 0.1451 (17) 1.1155 (14) 0.24	44 (14)

H22	1.1756	0.1118	1.1369	0.293*
C23	0.9927 (12)	0.0864 (11)	1.1256 (7)	0.171 (5)
C24	0.9728 (15)	-0.0160 (12)	1.1704 (12)	0.214 (10)
H24	1.0357	-0.0445	1.2011	0.256*
C25	0.8660 (16)	-0.0715 (12)	1.1694 (12)	0.223 (10)
H25	0.8551	-0.1393	1.1969	0.268*
C26	0.7713 (10)	-0.0280 (7)	1.1273 (6)	0.157 (4)
H26	0.6962	-0.0657	1.1276	0.188*
C27	0.7892 (10)	0.0735 (7)	1.0842 (6)	0.130 (4)
H27	0.7253	0.1026	1.0561	0.156*
C28	0.8979 (9)	0.1299 (9)	1.0829 (6)	0.120 (4)
C29	0.7445 (5)	0.3957 (6)	0.8938 (4)	0.0848 (18)
C30	0.7542 (5)	0.4775 (6)	0.8238 (4)	0.097 (2)
H30	0.8272	0.5149	0.8122	0.116*
C31	0.6560 (7)	0.5021 (6)	0.7725 (5)	0.105 (2)
H31	0.6620	0.5569	0.7261	0.126*
C32	0.5476 (6)	0.4462 (6)	0.7889 (6)	0.102 (2)
H32	0.4804	0.4622	0.7534	0.123*
C33	0.5414 (6)	0.3685 (6)	0.8571 (5)	0.103 (2)
H33	0.4689	0.3305	0.8695	0.124*
C34	0.4037 (9)	0.7067 (6)	0.8293 (7)	0.171 (4)
H34A	0.3448	0.7471	0.8023	0.256*
H34B	0.3691	0.6336	0.8392	0.256*
H34C	0.4647	0.7031	0.7790	0.256*
N1	0.5352 (3)	0.8163 (3)	0.4601 (3)	0.0515 (10)
N2	0.5393 (3)	0.9016 (3)	0.4073 (3)	0.0543 (10)
N3	0.7350 (3)	0.9268 (3)	0.4807 (3)	0.0617 (11)
N4	0.7172 (4)	0.7007 (4)	0.4042 (4)	0.0668 (12)
N5	0.8219 (4)	0.7427 (4)	0.6115 (3)	0.0690 (12)
N6	0.6368 (4)	0.8688 (4)	0.6740 (4)	0.0663 (12)
N7	0.8267 (4)	0.2708 (5)	0.9922 (4)	0.0939 (17)
N8	0.8414 (4)	0.3668 (6)	0.9466 (4)	0.0974 (18)
N9	0.6382 (4)	0.3447 (4)	0.9076 (4)	0.0877 (15)
Н9	0.6312	0.2944	0.9509	0.105*
01	0.5634 (3)	0.6576 (3)	0.5728 (3)	0.0601 (9)
O2	1.0568 (5)	0.3861 (8)	1.0048 (5)	0.158 (4)
H2	0.9979	0.3994	0.9724	0.236*
O3	0.4523 (5)	0.7608 (5)	0.9300 (4)	0.1310 (18)
H3A	0.5003	0.8131	0.9193	0.196*
S1	0.78500 (16)	0.60433 (18)	0.21174 (16)	0.1208 (7)
S2	1.00656 (11)	0.64120 (11)	0.68460 (12)	0.0674 (4)
S3	0.58372 (16)	0.98911 (14)	0.86114 (13)	0.0944 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.0502 (5)	0.0543 (5)	0.0720 (6)	0.0090 (4)	-0.0011 (4)	0.0206 (4)
C1	0.047 (3)	0.048 (3)	0.071 (3)	0.000 (2)	0.001 (3)	0.021 (3)

C2	0.053 (3)	0.048 (3)	0.068 (3)	0.006 (2)	0.001 (3)	0.013 (3)
C3	0.072 (4)	0.049 (3)	0.085 (4)	0.002 (3)	0.018 (3)	0.025 (3)
C4	0.068 (4)	0.047 (3)	0.102 (4)	-0.008(3)	0.016 (3)	0.014 (3)
C5	0.049 (3)	0.046 (3)	0.101 (4)	-0.006 (2)	-0.002 (3)	0.007 (3)
C6	0.055 (4)	0.064 (4)	0.141 (6)	-0.010 (3)	-0.013 (4)	0.008 (4)
C7	0.057 (4)	0.084 (5)	0.160 (7)	-0.001 (4)	-0.028 (4)	0.014 (5)
C8	0.059 (4)	0.086 (4)	0.151 (6)	-0.011 (3)	-0.043 (4)	0.032 (4)
С9	0.054 (3)	0.058 (3)	0.109 (4)	-0.005 (3)	-0.022(3)	0.025 (3)
C10	0.051 (3)	0.044 (3)	0.090 (4)	-0.001(2)	-0.001(3)	0.012 (3)
C11	0.044 (3)	0.044 (3)	0.073 (3)	0.000 (2)	-0.002(3)	0.017 (3)
C12	0.059 (3)	0.054 (3)	0.090 (4)	-0.002(3)	-0.007(3)	0.024 (3)
C13	0.065 (4)	0.056 (3)	0 115 (5)	-0.003(3)	0.008 (4)	0.022(3)
C14	0.000(1)	0.070(4)	0.149(6)	-0.014(3)	0.001 (4)	0.022(3)
C15	0.040(3)	0.078 (4)	0.124(5)	0.002(3)	-0.008(3)	0.031(4)
C16	0.049(3)	0.064(4)	0.077(4)	-0.002(3)	0.001(3)	0.021(3)
C17	0.019(3)	0.052(3)	0.077(1)	0.002(3)	0.001(3)	0.021(3)
C18	0.051(3)	0.052(3)	0.033(3)	0.005(2)	-0.012(3)	0.010(2)
C19	0.092(5)	0.167 (8)	0.077(1)	0.069 (6)	-0.02(4)	-0.034(5)
C20	0.092(0)	0.257(16)	0.002(1)	0.009(0)	-0.018(7)	-0.046(8)
C21	0.125 (9)	0.28(2)	0.001((1))	0.007(12) 0.169(15)	-0.083(8)	-0.158(14)
C22	0.125(5)	0.34(3)	0.167 (13)	0.24(2)	-0.118(12)	-0.149(16)
C23	0.204 (11)	0.199(12)	0.117 (7)	0.153(10)	-0.081(8)	-0.079(7)
C24	0.201(11) 0.34(2)	0.175(12) 0.171(15)	0.117(7) 0.145(9)	0.201 (17)	-0.130(14)	-0.068(10)
C25	0.31(2) 0.41(3)	0.171(13) 0.142(12)	0.115(9) 0.126(8)	0.147 (16)	-0.101(16)	-0.042(8)
C26	0.11(0) 0.263(12)	0.112(12) 0.109(7)	0.111 (6)	0.100 (8)	-0.041(7)	-0.006(5)
C27	0.209(12)	0.109(7) 0.114(7)	0.078(5)	0.100(0)	-0.050(6)	-0.018(5)
C28	0.134(7)	0.111(7)	0.079 (5)	0.108(7)	-0.045(5)	-0.036(5)
C29	0.157(7)	0.130(5) 0.127(5)	0.079(3)	-0.009(4)	-0.006(3)	0.030(3)
C30	0.007(4)	0.150 (6)	0.064(4)	-0.029(4)	-0.012(3)	0.033(1)
C31	0.116 (6)	0.119(6)	0.007(4)	-0.017(5)	-0.032(4)	0.012(1)
C32	0.076 (5)	0.121 (6)	0.077(1)	0.017(0)	-0.021(4)	0.058(5)
C33	0.076(3)	0.118 (6)	0.113(5)	0.005 (4)	-0.019(4)	0.050(5)
C34	0.071(1)	0.092 (6)	0.121(3) 0.141(8)	0.003(7)	0.079 (9)	0.009 (6)
N1	0.270(13)	0.092(0)	0.064(2)	0.003(7)	0.075(3)	0.005(0)
N2	0.048(2)	0.043(2)	0.001(2) 0.072(3)	-0.0033(18)	-0.009(2)	0.010(2)
N3	0.043(2)	0.059(3)	0.084(3)	0.002 (2)	-0.005(2)	0.023(2)
N4	0.064(3)	0.063(3)	0.001(3)	0.002(2)	0.003(2)	0.021(2)
N5	0.001(3)	0.003(3)	0.070(3)	0.010(2)	-0.003(2)	0.010(3)
N6	0.067(3)	0.075(3)	0.002(3)	0.013(2)	-0.004(3)	0.023(2)
N7	0.002(3)	0.001(5)	0.078(3)	0.015(2) 0.045(4)	-0.012(3)	0.013(3)
N8	0.002(1)	0.169 (6)	0.062(3)	0.013(1)	-0.012(3)	0.032(4)
N9	0.002(3)	0.113 (4)	0.002(3)	0.021(1)	-0.006(3)	0.052(1)
01	0.072(3)	0.052(2)	0.005(3)	0.001(3)	0.000(0)	0.023(3)
02	0.057(2)	0.032(2)	0.073(2) 0.083(4)	0.039(6)	-0.017(3)	-0.034(5)
03	0.162 (5)	0.117(4)	0.122(4)	0.006 (4)	0.041 (4)	0.059 (4)
S1	0.102(0)	0.1460 (18)	0.1122(1)	-0.0141(12)	0.0249(12)	-0 0339 (13)
S2	0.0527 (8)	0.0620.(9)	0.0906 (10)	0.0118(7)	-0.0018(7)	0 0200 (8)
S3	0.0027(0)	0.0020(0)	0.0783(11)	0.0090 (10)	0.0017(10)	0.0002 (9)
~~	0.1110(11)	0.0700 (12)	0.0,00 (11)	0.00000 (10)	0.001/(10)	0.0002 ())

Geometric parameters (Å, °)

Cr1—O1	1.964 (3)	C18—S3	1.616 (6)
Cr1—N4	1.981 (5)	C19—N7	1.299 (7)
Cr1—N5	1.992 (4)	C19—C28	1.473 (12)
Cr1—N1	2.003 (4)	C19—C20	1.479 (15)
Cr1—N6	2.003 (5)	C20—O2	1.244 (13)
Cr1—N3	2.058 (4)	C20—C21	1.463 (15)
C1—N1	1.362 (5)	C21—C22	1.26 (3)
C1—C10	1.433 (6)	C21—H21	0.9300
C1—C2	1.438 (6)	C22—C23	1.48 (2)
C2—O1	1.286 (5)	С22—Н22	0.9300
C2—C3	1.422 (6)	C23—C28	1.387 (10)
C3—C4	1.339 (7)	C23—C24	1.43 (2)
С3—Н3	0.9300	C24—C25	1.33 (2)
C4—C5	1.440 (7)	C24—H24	0.9300
C4—H4	0.9300	C25—C26	1.382 (14)
C5—C6	1.381 (7)	С25—Н25	0.9300
C5—C10	1.416 (6)	C26—C27	1.404 (11)
C6—C7	1.391 (8)	С26—Н26	0.9300
С6—Н6	0.9300	C27—C28	1.356 (12)
С7—С8	1.392 (8)	С27—Н27	0.9300
С7—Н7	0.9300	C29—N9	1.330 (7)
С8—С9	1.368 (7)	C29—N8	1.379 (7)
С8—Н8	0.9300	C29—C30	1.395 (8)
C9—C10	1.419 (7)	C30—C31	1.362 (8)
С9—Н9А	0.9300	С30—Н30	0.9300
C11—N3	1.358 (5)	C31—C32	1.381 (8)
C11—C12	1.374 (6)	С31—Н31	0.9300
C11—N2	1.403 (5)	C32—C33	1.341 (8)
C12—C13	1.380 (7)	С32—Н32	0.9300
C12—H12	0.9300	C33—N9	1.340 (7)
C13—C14	1.374 (7)	С33—Н33	0.9300
С13—Н13	0.9300	C34—O3	1.430 (9)
C14—C15	1.366 (7)	C34—H34A	0.9600
C14—H14	0.9300	C34—H34B	0.9600
C15—N3	1.346 (6)	C34—H34C	0.9600
C15—H15	0.9300	N1—N2	1.292 (4)
C16—N4	1.143 (6)	N7—N8	1.356 (7)
C16—S1	1.617 (6)	N9—H9	0.8600
C17—N5	1.155 (5)	O2—H2	0.8200
C17—S2	1.612 (5)	ОЗ—НЗА	0.8200
C18—N6	1.159 (6)		
O1—Cr1—N4	92.38 (16)	O2—C20—C21	122.2 (16)
O1—Cr1—N5	100.34 (15)	O2—C20—C19	121.2 (12)
N4—Cr1—N5	89.61 (17)	C21—C20—C19	116.5 (13)
O1—Cr1—N1	80.57 (14)	C22—C21—C20	123 (2)
N4—Cr1—N1	87.03 (16)	C22—C21—H21	118.7

N5-Cr1-N1	176.56 (16)	C20—C21—H21	118.7
O1-Cr1-N6	89.83 (16)	C21—C22—C23	123.9 (15)
N4—Cr1—N6	177.12 (17)	C21—C22—H22	118.0
N5—Cr1—N6	91.81 (17)	С23—С22—Н22	118.0
N1—Cr1—N6	91.51 (16)	C28—C23—C24	118.9 (15)
O1—Cr1—N3	157.01 (15)	C28—C23—C22	118.1 (14)
N4—Cr1—N3	89.21 (17)	C24—C23—C22	122.9 (12)
N5—Cr1—N3	102.61 (16)	C25—C24—C23	121.4 (15)
N1—Cr1—N3	76.61 (15)	C25—C24—H24	119.3
N6—Cr1—N3	88.04 (17)	C23—C24—H24	119.3
N1—C1—C10	128.6 (4)	C24—C25—C26	119.7 (17)
N1—C1—C2	110.1 (4)	С24—С25—Н25	120.1
C10—C1—C2	121.3 (4)	С26—С25—Н25	120.1
O1—C2—C3	121.4 (4)	C25—C26—C27	119.6 (13)
O1—C2—C1	120.5 (4)	C25—C26—H26	120.2
C3—C2—C1	118.1 (5)	С27—С26—Н26	120.2
C4—C3—C2	120.5 (5)	C28—C27—C26	121.3 (10)
С4—С3—Н3	119.8	C28—C27—H27	119.4
С2—С3—Н3	119.8	С26—С27—Н27	119.4
C3—C4—C5	123.2 (5)	C27—C28—C23	119.1 (12)
C3—C4—H4	118.4	C27—C28—C19	121.3 (7)
C5—C4—H4	118.4	C23—C28—C19	119.6 (11)
C6—C5—C10	120.1 (5)	N9—C29—N8	120.4 (5)
C6—C5—C4	121.3 (5)	N9—C29—C30	117.9 (6)
C10—C5—C4	118.6 (5)	N8—C29—C30	121.7 (6)
C5—C6—C7	121.3 (6)	C31—C30—C29	119.5 (6)
С5—С6—Н6	119.4	С31—С30—Н30	120.2
С7—С6—Н6	119.4	С29—С30—Н30	120.2
C6—C7—C8	118.9 (6)	C30—C31—C32	120.4 (6)
С6—С7—Н7	120.6	C30—C31—H31	119.8
С8—С7—Н7	120.6	C32—C31—H31	119.8
C9—C8—C7	121.1 (6)	C33—C32—C31	118.5 (6)
С9—С8—Н8	119.4	С33—С32—Н32	120.8
С7—С8—Н8	119.4	С31—С32—Н32	120.8
C8—C9—C10	120.8 (5)	N9—C33—C32	120.9 (6)
С8—С9—Н9А	119.6	N9—C33—H33	119.6
С10—С9—Н9А	119.6	С32—С33—Н33	119.6
C5—C10—C9	117.8 (5)	O3—C34—H34A	109.5
C5-C10-C1	118.1 (4)	O3—C34—H34B	109.5
C9—C10—C1	124.0 (4)	H34A—C34—H34B	109.5
N3—C11—C12	122.3 (4)	O3—C34—H34C	109.5
N3—C11—N2	118.9 (4)	H34A—C34—H34C	109.5
C12—C11—N2	118.8 (4)	H34B—C34—H34C	109.5
C11—C12—C13	118.8 (5)	N2—N1—C1	123.5 (4)
С11—С12—Н12	120.6	N2—N1—Cr1	121.4 (3)
C13—C12—H12	120.6	C1—N1—Cr1	115.1 (3)
C14—C13—C12	119.0 (5)	N1—N2—C11	110.8 (4)
C14—C13—H13	120.5	C15—N3—C11	117.7 (4)
C12—C13—H13	120.5	C15—N3—Cr1	130.0 (4)

C15—C14—C13	119.7 (5)	C11—N3—Cr1	112.2 (3)
C15—C14—H14	120.1	C16—N4—Cr1	174.6 (5)
C13—C14—H14	120.1	C17—N5—Cr1	166.2 (4)
N3—C15—C14	122.3 (5)	C18—N6—Cr1	179.0 (4)
N3—C15—H15	118.9	C19—N7—N8	119.3 (7)
C14—C15—H15	118.9	N7—N8—C29	116.7 (5)
N4	178.7 (5)	C29—N9—C33	122.8 (5)
N5-C17-S2	179.1 (5)	С29—N9—Н9	118.6
N6—C18—S3	179.6 (6)	С33—N9—H9	118.6
N7—C19—C28	117.8 (8)	C2—O1—Cr1	113.7 (3)
N7—C19—C20	123.4 (10)	С20—О2—Н2	109.5
C28—C19—C20	118.8 (8)	С34—О3—НЗА	109.5
N1—C1—C2—O1	-3.8 (6)	C29—C30—C31—C32	-0.4 (11)
C10-C1-C2-O1	176.8 (4)	C30—C31—C32—C33	0.7 (11)
N1—C1—C2—C3	175.9 (4)	C31—C32—C33—N9	-0.5 (11)
C10—C1—C2—C3	-3.4 (7)	C10-C1-N1-N2	0.6 (8)
O1—C2—C3—C4	179.4 (5)	C2-C1-N1-N2	-178.7 (4)
C1—C2—C3—C4	-0.3 (8)	C10-C1-N1-Cr1	-177.0 (4)
C2—C3—C4—C5	2.0 (8)	C2—C1—N1—Cr1	3.7 (5)
C3—C4—C5—C6	178.0 (5)	O1—Cr1—N1—N2	-180.0 (4)
C3—C4—C5—C10	0.1 (8)	N4—Cr1—N1—N2	-87.1 (3)
C10—C5—C6—C7	2.7 (9)	N6—Cr1—N1—N2	90.4 (4)
C4—C5—C6—C7	-175.1 (6)	N3—Cr1—N1—N2	2.8 (3)
C5—C6—C7—C8	-1.2 (10)	O1—Cr1—N1—C1	-2.3 (3)
C6—C7—C8—C9	-0.8 (10)	N4—Cr1—N1—C1	90.6 (3)
C7—C8—C9—C10	1.3 (10)	N6-Cr1-N1-C1	-91.9 (3)
C6—C5—C10—C9	-2.1 (8)	N3—Cr1—N1—C1	-179.5 (4)
C4—C5—C10—C9	175.8 (5)	C1—N1—N2—C11	179.7 (4)
C6—C5—C10—C1	178.4 (5)	Cr1—N1—N2—C11	-2.9 (5)
C4—C5—C10—C1	-3.8 (7)	N3—C11—N2—N1	0.9 (6)
C8—C9—C10—C5	0.1 (8)	C12—C11—N2—N1	-179.4 (4)
C8—C9—C10—C1	179.6 (5)	C14—C15—N3—C11	-4.1 (8)
N1—C1—C10—C5	-173.8 (5)	C14—C15—N3—Cr1	177.6 (4)
C2-C1-C10-C5	5.4 (7)	C12—C11—N3—C15	2.9 (7)
N1—C1—C10—C9	6.7 (9)	N2—C11—N3—C15	-177.4 (5)
C2—C1—C10—C9	-174.1 (5)	C12—C11—N3—Cr1	-178.5 (4)
N3—C11—C12—C13	-0.7 (8)	N2—C11—N3—Cr1	1.2 (5)
N2-C11-C12-C13	179.6 (5)	O1—Cr1—N3—C15	169.4 (4)
C11—C12—C13—C14	-0.4 (9)	N4—Cr1—N3—C15	-96.4 (5)
C12—C13—C14—C15	-0.6 (9)	N5—Cr1—N3—C15	-7.0 (5)
C13—C14—C15—N3	3.0 (10)	N1—Cr1—N3—C15	176.4 (5)
N7—C19—C20—O2	3.4 (16)	N6—Cr1—N3—C15	84.4 (5)
C28—C19—C20—O2	-177.7 (10)	O1—Cr1—N3—C11	-9.0 (6)
N7—C19—C20—C21	-172.2 (8)	N4—Cr1—N3—C11	85.2 (3)
C28—C19—C20—C21	6.6 (12)	N5—Cr1—N3—C11	174.6 (3)
O2-C20-C21-C22	-180.0 (17)	N1—Cr1—N3—C11	-1.9 (3)
C19—C20—C21—C22	-4(2)	N6—Cr1—N3—C11	-94.0 (3)
C20—C21—C22—C23	-2(3)	O1—Cr1—N5—C17	50.8 (17)
C21—C22—C23—C28	7(2)	N4—Cr1—N5—C17	-41.6 (16)

C21—C22—C23—C24	-177.3 (15)	N6-Cr1-N5-C17	140.9 (16)
C28—C23—C24—C25	2(2)	N3—Cr1—N5—C17	-130.7 (16)
C22—C23—C24—C25	-173.8 (16)	C28—C19—N7—N8	-178.7 (5)
C23—C24—C25—C26	-2(3)	C20-C19-N7-N8	0.2 (10)
C24—C25—C26—C27	1(2)	C19—N7—N8—C29	175.0 (5)
C25—C26—C27—C28	0.1 (13)	N9—C29—N8—N7	14.2 (9)
C26—C27—C28—C23	-0.4 (12)	C30—C29—N8—N7	-165.0 (6)
C26-C27-C28-C19	179.1 (6)	N8—C29—N9—C33	-179.0 (6)
C24—C23—C28—C27	-0.5 (13)	C30-C29-N9-C33	0.3 (10)
C22—C23—C28—C27	175.3 (10)	C32—C33—N9—C29	0.0 (11)
C24—C23—C28—C19	180.0 (9)	C3—C2—O1—Cr1	-177.8 (4)
C22—C23—C28—C19	-4.2 (13)	C1—C2—O1—Cr1	2.0 (6)
N7—C19—C28—C27	-2.9 (11)	N4—Cr1—O1—C2	-86.4 (3)
C20-C19-C28-C27	178.1 (8)	N5-Cr1-O1-C2	-176.4 (3)
N7—C19—C28—C23	176.6 (6)	N1—Cr1—O1—C2	0.2 (3)
C20—C19—C28—C23	-2.3 (11)	N6-Cr1-O1-C2	91.7 (3)
N9—C29—C30—C31	-0.1 (10)	N3—Cr1—O1—C2	7.2 (6)
N8—C29—C30—C31	179.2 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3A…S3	0.82	2.45	3.234 (5)	161
O2—H2…N7	0.82	2.41	2.840 (9)	114
O2—H2…N8	0.82	1.81	2.536 (8)	147

Fig. 1

